ON PARAMETER ESTIMATION OF SEMI-VARYING COEFFICIENT MODELS WITH CORRELATED RANDOM ERRORS
نویسندگان
چکیده
منابع مشابه
Sampling Designs for Regression Coefficient Estimation with Correlated Errors*
The problem of estimating regression coefficients from observations at a finite number of properly designed sampling points is considered when the error process has correlated values and no quadratic mean derivative. Sacks and Ylvisaker (1966, Ann. Math. Statist., 39, 66-89) found an asymptotically optimal design for the best linear unbiased estimator (BLUE). Here, the goal is to find an asympt...
متن کاملVarying Coefficient Models for Data with Auto-correlated Error Process.
Varying coefficient model has been popular in the literature. In this paper, we propose a profile least squares estimation procedure to its regression coefficients when its random error is an auto-regressive (AR) process. We further study the asymptotic properties of the proposed procedure, and establish the asymptotic normality for the resulting estimate. We show that the resulting estimate fo...
متن کاملEfficient Estimation in Heteroscedastic Varying Coefficient Models
This paper considers statistical inference for the heteroscedastic varying coefficient model. We propose an efficient estimator for coefficient functions that is more efficient than the conventional local-linear estimator. We establish asymptotic normality for the proposed estimator and conduct some simulation to illustrate the performance of the proposed method.
متن کاملParameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation
Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...
متن کاملPartially linear varying coefficient models with missing at random responses
This paper considers partially linear varying coefficient models when the response variable is missing at random. The paper uses imputation techniques to develop an omnibus specification test. The test is based on a simple modification of a Cramer von Mises functional that overcomes the curse of dimensionality often associated with the standard Cramer von Mises functional. The paper also consid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Pure and Apllied Mathematics
سال: 2015
ISSN: 1311-8080,1314-3395
DOI: 10.12732/ijpam.v98i1.1